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FOREWORD

This report contains the final results of the studies conducted under
Contract NAS2-3918, Technological Requirements Common to Manned
Planetary Missions. This report consists of five volumes. The first volume
(SD 67-621-1) summarizes the study results. The detailed descriptions of
the study are presented in the following volumes:

Appendix A - Mission Requirements (SD 67-621-2)

Appendix B - Environments (SD 67-621-3)

Appendix C - Subsystem Synthesis and (SD 67-621-4)
Parametric Analysis

Appendix D - System Synthesis and (SD 67-621-5)

Parametric Analysis
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INTRODUCTION

The meteoroid, thermal, and radiation protection requirements have
been determined for the missions being considered. The objective of the
meteoroid protection studies was to develop meteoroid shield scaling equa-
tions. The meteoroid protection requirements are expressed as a set of
scaling equation coefficients which define the shield weight as a function of
the mission objective, spacecraft configuration, and mission duration. The
purpose of the thermal requirements study was to develop weights and weight
scaling equations for all systems and structural aspects of long-term space
vehicles. The heat balances and requirements on the mission module and
the thermal protection required for propellant storage are considered. The
radiation protection study developed shielding requirements for the inter-
planetary legs of the missions, and special consideration was given require-
ments resulting from the Jupiter trapped radiation belt.

METEOROID ENVIRONMENT AND PROTECTION

The objective of the meteoroid protection study
was to develop meteoroid shield scaling equations which would
yield optimum shield weight as a function of mission duration and module
vulnerable area for each baseline system configuration. The meteoroid
environments considered, the structural models adopted for the study, and’
the resultant scaling equations are discussed in the following sections,

METEOROID ENVIRONMENT

Two meteoroid environment models, provided by the NASA in
Reference 1, were considered in the analyses, The meteoroid

fluxes are shown in Figure 1 are given by

K1
10 f(R)
N=—x—
m 3
where
2 .
+K6R + K7R .
f(R)=10 for asteroidal particles

"

f(R) = 1.0 for cometary particles
N = number of particles/meterZ - second

-1 -
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m = particle mass (grams)

R

L}

heliocentric radius (A.U.)

K.
i

constants

The values used for the constants (K,) are given in Table 1. The
cometary particles were considered 'as omnidirectional and the asteroidal
particles were considered as unidirectional in direct orbit about the Sun.

The particle densities (Pp) and impact velocities (Vp) are given by

pp = 0.5 grams/cubic centimeter for cometary

= 3.5 grams/cubic centimeter for asteroidal

and

v =30R'1/2

P
-1/2 . .
= 15R kilometers/second for asteroidal.

kilometers/second for cometary '

The nominal cometary environment and maximum asteroidal environment

were combined to form a maximum meteroid environment. The nominal

cometary and the nominal asteroidal environments were combined to form a

nominal meteoroid environment. Protection requirements were then I
evaluated relative to the maximum meteoroid environment and the nominal |
meteoroid environment.

MISSIONS AND SYSTEM CONFIGURATIONS

Representative mission profiles were assumed for each of the mission
objectives being considered. The heliocentric radius of the selected missions
is shown in Figures 2 and 3 as a function of time since Earth orbit
escape. For the purposes of this study, the Vesta mission was assumed to I
be the same as the Ceres mission.

The baseline system configurations which were assumed for the flyby,
orbital, and planetary landing missions are shown in Figure 4, For
the flyby and orbital configurations, meteoroid protection must be provided
for the Earth reentry module (ERM), mission module (MM), planetary probe
module (PPM), and the propulsion module or modules (PM). In addition to 1
the above protection requirements, meteoroid shielding must be provided
for the planetary excursion module (PEM) for the lander configurations. The

SD 67-621-3
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heatshield and the aft bulkhead of the aerobraker must be protected during

the transplanet mission phase for the aerobraker configuration, and during
the transearth mission phase the ERM and MM must be shielded.

The structural models, damage criteria, and the placement of the
meteoroid shielding adopted for each of the modules are shown in
Figures 5 through 9. The ERM, Figure 5, is assumed to
be within a protective pressurized shroud in order to prevent outgassing
from the ablator. The thickness of the load-carrying wall is increased to
prevent perforation and loss of internal pressure. Perforation of the mission
module wall, Figure 6, is prevented by thickening the load-carrying
module wall. The probes and the planetary excursion module are also
assumed to be housed within a protective shroud. The additional thickness
required to prevent perforation of the housing is added to the load-carrying
wall, For cryogenic propulsion modules, the thickness of the load-carrying
wall is increased to prevent high-energy impact on the tank wall, The
thickness of the aerobraker heat shield is increased, as required to prevent
full penetration of the ablator.

ANALYSIS METHODS

As part of the meteoroid shielding analysis of the command and service
module (CSM) for project Apollo, the SD initiated hypervelocity impact testing
of numerous simulated spacecraft structures, Evaluations that were made of
these data indicated that the Summer's penetration equation was too conser-
vative and that the Herrmann and Jones equation was too optimistic. Further
evaluations that were made included not only the new Apollo data but all recent
high-velocity data available and culminated in the following equation being
adopted for the analysis of the Apollo CSM (ablator and windows excepted):

1.1  0.5., 2/3

1.38d p TV
p= p P
p 1/6 o 1/4
t t
where

dp = particle diameter (centimeters)
Pp = particle density (grams/centimeter3)
Vp= particle impact velocity (kilometers/second)
Pt = target density (grams/centimeter3)
Ht = target Brinell hardness number (kilograms /millimeterz)

SD 67-621-3




BRM

Thicken t., as required to prevent
perforation of t2 and loss of
internal pressure.

Minimum structure:

I ARE RN NEAERETNEE

t‘l = 0.05 cm aluminum - P
/
t2 = 0.15 cm aluminum //
[Aluninum bumper [Hut shield
Aluminum load Pressurized area
carrying wall

Figure 5, Earth Reentry Module Structure and Allowable Damage

MM

Thicken to as required to prevent
perforation of t; and loss of cabin
pressure

Minimum structure:

t, = 0.05 cm aluminum

2 =0.15 ¢cm aluminum

t t

\r

[

J\,

Aluminum bumper
Super insulation

load carrying wall
aluminum 70°F

Figure 6. Mission Module Structure and Allowable Damage
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PEM J\/
Thicken t, as required to prevent

perforation of probe housing and damage
to probe interior.

t3 = 0,10 cm aluminum

v
Minimum structure: 4
"

ty = 0.05 cm aluminum )
'

tp, = 0.15 cm aluminum )
v

/

q

A
Aluminum bumper T

Aluminum load
carrying wall

Probe Housing

Figure 7. Planetary Module Structure and Allowable Damage

t1 t2
Heatshield (aercobraker) f J\F v "

’ R
Thicken t, as required to limit 1 ‘o
penetration into ablator to full q NVARY’
depth. N

p / L

Minimm structure: j .\
t; = 0.05cm aluminum / X

1 AN
t2 = 2.54 cm ablator (AVCO) f /\ ‘

/ J\r \'r

[ Bumper

Heatshield

Figure 8, Aerobraker Heatshield Structure and Allowable Damage
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1.

Thicken t, as required to prevent
perforation of t5. This prevents
high energy impact on cryo tank.

Minimum structure:

tl = 0,05 cm aluminum

0.32 cm aluminum
(Retrobraker Spacecraft)

= 0,15 cm aluminum

(Flyby Spacecraft)

ty

L

Aluminum bumper

Aluminum load
carrying wall

Super insulation

Pressure vessel .__J

carrying cryo. fuel
(-1430°F)

—.r////////[/1

Figure 9. Propulsion Module Structure and Allowable Damage
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The above penetration equation was compared with the equation provided by
the NASA/MAD and was found to be essentially equivalent when the target
material is hard aluminum,

The minimum thickness single sheet or single sheet equivalent thickness,
required to resist perforation is given in centimeters, by

t=1.8p

Considerable testing has also been done at the SD gn multisheet structure
and the early concept of ballistic limit has been replaced by improved pene-
tration models. The approach adopted for this study was that of the scaled
multisheet model that takes account of the relative size of the structure and
the particle. For a simplified approach, the equivalent thickness of a multi-
sheet structure may be expressed as

t,

2 1

+ a—

B Z K,
j=2 !

|
n

where
hi hi
= - L _ =
ki 1.0 k I 0 =< 3 10
h,
k. = 1.0-10k, [10< =
i d

h,
k' =0.08 [structural efficiency of approximately 5 at —d—1= 10>

ti = the ith sheet thickness
ki = the penetration efficiency of the debris striking the ith sheet |
hi = the spacing of the ith sheet from the sheet which fragments
the projectile
d = the particle diameter.

The single sheet equivalent thickness (t), target density (P;), target
Brinell hardness number (H ), and the penetration efficiency (kz) used in l
the computations of the meteoroid shield requirements are shown in
Table 2 for each of the modules considered. The target density and

Brinell hardness number for the manned modules are for aluminum. The
heatshield density and hardness number are based on Avco ablator (Apollo).

-12 -
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The penetration efficiency assumes spacing between the bumper and the
meteoroid shield such that the ratio of spacing to particle diameter (hp/d)
is greater than ten, resulting in a second sheet structural efficiency of five,

Treatment of the time dependent flux by effective exposure time is
given by:

Ta
Kia - Kir f
T =10 f(R)AT
r o
where
T, = the effective exposure time (days)
K,, = a constant of the actual flux
Ky, = a constant of the reference flux (flux that is inherent to the
meteoroid protection computer program)
f(R) = the variable time parameter of the flux
T, = the actual mission duration (days)

An average meteoroid impact velocity (_\7 ) was used for each mission
and was determined from P

T

v =L 2 v (R)AT
P Ta P
(o]

where V,, (R) equals the previously defined particle velocities. The resultant
average meteoroid impact velocities are shown in Table 3 for the six
mission objectives.

Allocation of shielding to the modules for minimum total spacecraft
shielding mass is determined by use of Lagrange's method of the undeter-
mined multiplier, '

oW £\ 3(Fot - For Foz Foz- - Pop) =0
9P, 9Pgi

where W is the sEacecraft total shielding mass, P,j is the probability of
no failure of the ith module, Pyt is the spacecraft probability of no failure,
n is the number of modules, and \ is the undetermined multiplier that

-14 -
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Table 3, Average Meteoroid Impact Velocity

Average Impact Velocity (kilometers/second)
Mission Cometary Asteroidal
Jupiter 19.0 9.5
Ceres

22,7 11,35

Vesta
Mars 29.4 14.7
Venus 30.7 *
Mercury 38. 3 %

*Asteroidal environment considered negligible to cometary.

ensures W to be a minimum. The SD Minimum Weight Shielding computer
program developed for the Apollo spacecraft was utilized to determine the
optimum shielding mass required for the various missions. The program
determines the additional mass (wsi) and the additional thickness of
material (tg;) required for shielding. For the present study, an overall
probability (Py4) of no failure of 0.99 was assumed.

The total structural unit weight of the ig_l module (Wy;) required for
meteoroid protection is given by

Wei = Wi T Wy

where W, : is the minimum module structural unit weight required for loads

and thermal protection and Wg; is the additional structural unit weight required

for meteoroid protection. For a constant minimum structural unit weight

Wii=Cp+t Wy

It can be shown that for a given reliability goal, the shielding unit weight

needed as a function of the module exposure time and vulnerable area is of
the form

Wsi = CplAyiTy; - Cala; (AT, 2 Cy)

- 15 -
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where

Avi vulnerable area of the ig‘ module and

T,; = time the i_til module is exposed to the meteoroid environment.

The total structural unit weight is then

Wi = Cp + C(Ay T,y - C

ti a

a)
which can be approximated by the following meteoroid protection weight
scaling equation

Wi = Cp + ColA T 4)e

For the omidirectional cometary flux, the vulnerable area (A,;) is equal
to the surface area. For the unidirectional asteroidal flux, the vulnerable
area is equal to the projected area which was assumed to be equal to one-third
the surface area. The required incremental structural unit weight for mete-
oroid protection [CZ(AviTai)dl is, in both cases, applied to the entire module
surface area which permits flexibility in the spacecraft attitude time history.

The scaling equation coefficients (C;, C,, and¢) which were determined
are given in Tables 4 through 7 for the various modules considered in the
study for a probability of no failure (P_;) of 0.99. The vulnerable area (A;)
is in square feet and the exposure time (T,;) is the length in days that each
module is exposed to the meteoroid environment. The coefficients defined in
these tables were used during the system synthesis analyses (Appendix D) to
define the meteoroid protection requirements for each of the modules. During
the weight synthesis analyses, it was assumed that the incremental weight
required for protection of the propulsion modules was jettisoned prior to
ignition.

Scaling equation coefficients are not shown for the Earth orbit escape
propulsion module since the characteristics of such a meteoroid protection
bumper are essentially independent of the mission. To provide protection
for Earth orbit stay times in excess of 100 days the additional structural unit
weight, which is jettisoned prior to the Earth orbit escape maneuver, is
approximately 2 kg/m?2 (0. 4 1b/ft2), This value is based on a bumper thick-
ness of 0,05 cm (0.02 in) plus an additional 50 percent for the stand-off
support structure.
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THERMAL ENVIRONMENT AND PROTECTION

The primary objective of the thermal analysis was to establish the
overall heat balances as well as heat rejection and thermal protection
systems requirements for the manned mission module. The second objec-
tive was to determine the required insulation systems for the storage of the
propellants in space. This investigation does not consider the need of active
refrigeration in the case of cryogenic propellants, but aims primarily at the
passive storage or thermal insulation requirements involved. The section
will be presented in two parts, the first dealing with the heat balances and
requirements on the mission module and the second dealing with thermal
protection required for propellant storage.

A summary of the essential results of the thermal protection studies is
shown on Table 8. An insulation weight of approximately 0.1 pounds /foot?
is adequate for the closed ecological system encompassing a range of 3 to 20
men in the mission module. It is important to note that because of the
extreme heating near Mercury, either solar orientation control or a shadow
shield will be required to keep direct solar radiation away from the environ-
mental control subsystem (ECS) radiators. If solar radiation impinges on
the radiators even cyclically, as in a rolling mode, it will be impossible to
maintain life-zone temperatures in the mission module, The alternative to
orientation control or shadow shielding involves the use of active refrigeration
systems. Such systems may be of value in achieving greater mission flexi-
bility, but development of reliable space designed units for long-duration
missions was considered to be only speculative at this time. Such systems
were eliminated from consideration in this study.

A heavier insulation requirement is evident for the open ecological
system on missions to Jupiter., This results from the reduced heat
generation within the module and an assumed criteria which limits the
heat lost from the external surfaces to 10 percent of the internal heat
generation., In all probability it is satisfactory to fix the insulation require-
ment at the 0.1 pound/foot2 value and modify the ECS radiator flow control
to reduce the heat rejection to about 80 percent of the design internal heat
dissipation. As an alternative to this, it is possible to supply additional
electrical power for heating purposes in the Jupiter mission case.

Each pound of radiator, including its glycol coolant within the tubes,
is capable of rejecting 50 Btu/hour of internally generated heat. By allowing
a 10 percent greater weight for the Mercury mission, a common radiator
requirement is established consistent with the thermal protection, It is
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emphasized that no considerations of redundent radiator area for mission
reliability purposes are included in this analysis,

Weight scaling equations are developed for the optimization of the
propulsion module insulation thickness and boil-off propellant requirements,
and representative thermal protection requirements are presented, The
insulation heat-flow rates were integrated for missions to Mercury and
Jupiter for each propellant to give a net integrated heat transfer, which was
balanced against the net heat capacity in the fluid to yield insulation thickness
requirements, For the mission to Mercury, only the hydrogen tank insula-
tion thicknesses tend to exceed one inch on practical tankage area-to-volume
ratios; however, the effect of a shadow shield or selective orientation control
would lead to somewhat reduced requirements. The analysis has allowed an
additional 50 percentl of the insulation heat transfer to account for support
heat transfer (and other penetrations). Results are expressed as a function
of the area-to-volume ratio since many tank configurations are involved in
the task of vehicle design.

For a no-loss propellant storage technique, the tank volume must be
sized for the lowest density or highest usable saturation temperature. For
hydrogen, this would mean almost a 20 -percent volume increase, thus mak-
ing the case of 20-percent boil -off (evaporative storage) at 14. 7 psia com-
parable to the equivalent no-loss storage tank in volume. For the other
fluids, the volumetric coefficient of thermal expansion is less severe but
may amount to 10 percent or more. A no-loss propellant storage technique
also requires an increased wall thickness due to the high vapor pressure.

MANNED MISSION MODULE HEAT BALANCE AND THERMAL PROTECTION

The required weight for insulation and heat-rejection systems for a
spectrum of missions and crew sizes were determined. The missions range
from earth to Mercury and Jupiter on the extremes. The crew sizes include
3 to 20 men for each target body, and body heating is studied for two orienta-
tions. The orientations involve a rolling mode (where the external surface
is exposed to a cyclically varying heat flux from the sun), and an end-oriented
mode (where the end of the mission module is exposed directly to solar
radiation). The internal heat sources considered in the heat balances included
crew metabolic heating, life support and environment control systems, and
other electrical loads. The electrical generating system was considered to
be independent of the mission module and was not involved in the heat bal-
ances on that module aside from the energy dissipation within it. The
assumed internally generated heat is shown in Table 9 for crew sizes
of 3, 9, and 20 men for an open and closed system.

This is an arbitrary allowance. Some heat input in excess of that which is conducted through the insulation
will occur but the actual value must await experimental effort on particular configurations,
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The only external heat load considered was that of direct radiation from
the sun. Thus, this study requires the reservation that the spacecraft is
assumed to bea minimum of2to3 planetary radii from the planets at all times,
so that heat received by albedo and planetary emission can be ignored in the
heat balances for ECS and thermal-protection-requirement considerations.

Assumptions and Method

The study of heat balances was divided into two subtasks; first, a
determination of the heating influence of surface coatings and second, the
insulation and heat rejection radiator requirements. Conceivably, a
totally passive system could be constructed so that the delicate balance
between insulation and internal heat generation could be used to maintain
life zone temperatures at any given point in the trajectories. However,
for any practical mission, since a wide range of conditions are encountered
and since these are continuously changing during the mission, it was
mandatory that a system be defined using a glycol circulation heat rejection
means. In this way it was possible to identify one coating system which
was consistent with all missions and one insulation system which would
also be usable for all missions. In order to accomplish this ideal approach,
it was initially estimated that the insulation system would be designed so
that not more than 10 percent of the internal heat generation on a given
vehicle would be either lost or gained from the external surfaces of the
mission module. That means that the ECS radiator would be used to
accomplish the predominant heat rejection from the module. In this
manner it is possible to minimize the effect of heliocentric radius on the
internal temperatures. It was further estimated that for the purpose of
this study the mission module sizes would be approximately 15 feet in
diameter by 15 feet long for a three-man crew size (representing the
minimum mission module), and 30 feet in diameter by 30 feet long for a
20-man crew (representing a maximum mission module size). A glycol
circulation system was considered for heat rejection because it is the
simplest system available and is typical of existing systems. No active
refrigeration system such as a vapor compression cycle is included in this
study although it appears that such a system might be necessary in the case
of a mission te Mercury if solar orientation control or shadow shielding were
not utilized. An active system could also be required for Mercury (and possi-
bly Venus) missions if a low parking orbit altitude were used throughout the
planetary stay.

The effect of the optical-thermal properties of surface coatings on the
surface temperatures of the mission module and propulsion module was
examined as a function of the heliocentric position, with the result that a
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preferred choice is expressed for the lowest practical absorptivity to emis-
sivity ratio. In this manner it is possible to isolate the effects of internal
and external heat sources and minimize the interaction of orientation control.
The philosophy applied here is expected to provide the most direct approach
to thermal control and protection systems design and serves to clarify where
reliability considerations of redundancy and increased design margin will be
most valuably applied to achieve mission success.

Orientation and Surface Coatings

Equilibrium temperature results for rotating spheres and surfaces
normal to the sun's rays which radiate from the front only are shown in
Figure 10. These limits bound the equilibrium temperatures which will be
achieved for all module attitude time histories. The figure shows the equili-
brium temperature as a function of heliocentric distance, over the range
from Mercury to Jupiter, including absorptivity to emissivity values of 0.2,
1 and 5. The equilibrium temperature range varies between 1100 K and
83 K and, since the life zone is at approximately 290 K, it is evident that a
simple, completely static environmental control system is not achievable.
This wide range of values partially substantiates the design approach to use
the glycol ECS radiator for primary heat rejection, and insulation to isolate
the module from solar heating. It should be noted that to achieve an a/e of
0.2, it is necessary to use a white surface coating such as zinc oxide which
is highly reflective to incident solar radiation wavelengths and highly emis-
sive for long wavelength surface radiation. To approach an a/e of 5, a very
specular surface is required; that is, one which is capable of reflecting a
great deal of the incident solar radiation but is not capable of emitting at low {
temperatures even as much energy as it reflects, Similarly, for a a/e of 1,
it is necessary to have surfaces such as black lacquers, deposited carbon
black, or other materials which emit and absorb all wavelengths equally.

Since temperature is a prime consideration in the availability of the
structural materials, either for the insulation or for the primary structure
of the modules, it is evident that the lowest temperatures would generally
allow the widest range of material selection and therefore the least cost in |
development, design, and fabrication. The high effectiveness of the super-
insulation makes it qualitatively evident that a rather low weight penalty is
involved in the use of insulation to isolate the ECS from the influence of the
solar heat source which further supports adopting this approach.
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An absorptivity to emissivity ratio of 0.2 is considered representative
of the lowest practically obtainable ratios available in the current technology
and it is currently being approached on slab-sided spacecraft, With improve-
ments in the state of the art it may be possible to reduce this ratio toa smaller
value and work has been going on for many years in this direction. Concepts
involving diffraction gratings and very selective materials have been the
subject of much research in the aerospace industry, but to the present there
has been no significant breakthrough in the achieving of very low ale . There-
fore, a value of a/e = 0.2 has been selected for this entire study. From
Figure 10, it is evident that 0,2 leads to a much lower surface temperature
than a ratio of 5 and is well below the life zone for the more distant planetary
bodies. If it were desired to achieve a higher temperature, a black coating
could be used, but the amount of insulation required to protect a vehicle would
be only slightly influenced in this study. The micrometeoroid penetration
barrier support structure (Figure 6) was studied in terms of the heat transfer
which bypasses the insulation. The results show the current recommended
design is adequate for thermal purposes on the mission modules.

Superinsulation Types f

The types of superinsulation available for the current application are
quite wide and encompass ranges of densities from 55 to over 120 kg/m3
(3.5 to 7.5 1b/ft3). The Linde type of superinsulation such as the SI-61 is
the most dense and is constructed of aluminum foil of about 1/4 mil thickness
with glass fiber separators between each of the aluminum foil reflector layers.
Other types of insulation applicable to this study include NRC-2, the Quality
Electric "Dimplar' and a design developed by Goodyear Company. The '
NRC-2 type of insulation, which was the insulation assumed during this study, 1
is composed of 1/4 mil aluminized mylar which has a random crinkle built
into the surface so that no separators are necessary., This insulation has a
density of 55 kg/m3 (3.5 1b/ft3) but a value of 80 kg/m3 (5 1b/ft3) was used
during this study to account for attachments and supports.

The results of tests performed at SD on NRC-2 type of insulation are
presented on Figure 11 in the form from which data was reduced. The super- I
insulation integrated heat flow versus temperature is based on tests taken
over a range of approximately 78 K to 390 K. The analytical representation
of the curve is shown in Figure 11. Figure 12 is a derived analytical curve
which is based on an assumed design of the micrometeoroid bumper structure
which has low conductivity, 2 inch thick, fiber glass standoffs which have
been structurally designed to minimize heat transfer. Figure 12 shows
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clearly that its impossible to get much below 0.1 of a Btu/hour square foot
just because the structure of the micrometeoroid bumper achieves this
minimum value in the case of unexposed surfaces rejecting heat to space
("unexposed' means not directly exposed to solar radiation). !

Space Radiator Sizing

The design of space radiators, while fairly simple in principle, requires
some consideration of the structure of the radiator itself. It is possible to
use heat exchange tubes built into a sheet, such as the "panel-coil" design
of Dean Products Corp., or designs such as the roll-bonded structures which
are actually heat exchanger surfaces permitting transfer of the fluid through'
tubes that are embedded and embossed within the surface of the heat
exchanger. The available patterns and weights are widely varying but it is
possible to achieve a radiator weight of approximately 2 pounds/square foot
including the fluids which are occupying the space inside the heat exchanger
tubes.

While the best stainless steel heat exchangers today have a weight of
approximately 2.1 pounds/square foot, it is clear that with little additional
development a value 2 pounds/square foot, including fluids, can be achieved
practically in the space vehicles. Since a square foot of radiator which is
operating at approximately 300 K can reject approximately 100 Btu/hour in
a water-glycol circulation system, (allowing its temperature to drop down to
approximately 290 K in circulation) the design weight factor for a radiator
should be about 50 Btu/hour/pound/radiator. This figure can be used for
rough radiator sizing and while, perhaps, it can be somewhat reduced by very
careful radiator design, the sensitivity of this small factor should not be
significant in the overall system design. For example, 1 kilowatt is 3,412 Btu/
hour; therefore in the case of the 20-man mission module for which approxi-
mately 10 kW are reject.ed if the partially closed life support subsystem is
employed, the radiator area would be about 340 square feet, and the radiator
weight including fluids in the radiator would amount to approximately
680 pounds as a representative value., To place this value in further perspec-
tive, the area represents about 15 percent of the mission module area; the
weight represents about 1 percent of the total mission module weight,

lA problem of some note which has been evident on recent space vehicle flights is that of preventing liquefaction
(condensation) of water vapor inside the occupied compartment. The condensation may take place on any
surfaces which are below the dew point of the water vapor. It appears that by keeping heat transfer rate
through the compartment walls to a value of approximately 1.0 Btu/hour square foot or below, it is easy to
prevent this condensation from occurring with the forced convection available from the environmental control
subsystem (ECS) conditioning and circulating system. '
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Conclusions

A minimum amount of thermal protection will be required on all missions
being considered. Ideally about 10 layers of multilayer superinsulation will
be sufficient and this corresponds to a weight of approximately 0.1 pounds/
square foot on the entire external surface of the mission module. It is also
concluded that in a mission to Jupiter actual orientation is not very important.
Results show that heat loss is the major consideration and, while slightly
more than 0.1 of a pound/square foot of insulation is needed to stay within
the 10 percent of the system heat rejection internally, it is clear that there is
sufficient adjustability in the heat rejection capability of the ECS Radiator that
the recommended 0. 1/pound square foot of insulation will be sufficient for all
purposes.

A further conclusion is that for trips to Mercury, either solar orienta-
tion will be an absolute requirement or it will be necessary for a shadow
shield to be erected which prevents the direct solar heating from impingement
upon the radiator areas of the mission module. The primary limitation is not
the insulation in this case but rather the heat rejection from the radiators
which, if directly exposed to solar heating or cyclically exposed to solar
heating, would cause the internal temperature of the mission module to
become excessive. The result of the analysis shows that with a solar orien-
tated system, the net heat gain stays below 10 percent of the system radiator
rejection as long as insulation of approximately 0.1 pounds/square foot is
maintained on all surfaces.

The final conclusion regards the design of radiators for environmental &
control purposes. These radiators should be painted white to maintain a high
emissivity, and for the purpose of commonality analysis it should be assumed
that 50 Btu/hour can be rejected from each pound of radiator surface.

PROPELLANT STORABILITY AND THERMAL PROTECTION
REQUIREMENTS

The purpose of this portion of the study was to develop propellant boil-
off and insulation thickness weight scaling equations and to examine typical
insulation mass requirements for long-term propellant storage. Both the
factors of heat transfer into the tank and heat storage within the propellant
were examined. The examination includes both no-loss type of storage and
evaporative storage techniques. For the no-loss storage of cryogens, pres-
sure rises of 14.7 to 90 psia and 50 percent slush to 90 psia were used to
establish the allowable heat budget. In addition, the insulation requirements [
for total evaporation of 5, 10, and 20 percent of the total propellant were
examined,
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A comparison of the liquidus ranges of all of the propellants of impor-
tance in this study is shown in Figure 13. The liquids range includes the
freezing point at the bottom, the normal boiling point at 14,7 psia, the 90 psia
limiting pressure point for storability of propellants, and the critical point,
which is the upper liquid limit for any of the propellants involved. Figure 13
will allow an estimate of where potential boiling and freezing problems will
occur. For example, at Jupiter monomethylhydrazine (MMH) is well below
its freezing condition. Insulation must be added to prevent heat from being
lost or it may be necessary to add heat to the system. The diborane and
methane may possibly freeze if left at Jupiter for a long time, so insulation
will be required. Oxygen, FLOX, and oxygendifluorine are all storable pro-
pellants, and liquid hydrogen will boil off, but it has a small differential
temperature. At 3 A, U., or approximately the asteroid belt, oxygen difluoride
and methane are-storable, LOX and FLOX are slightly above the 90 psia limit,
liquid hydrogen is only slightly changed from Jupiter, and diborane is near its
freezing point. For diborane this is approximately the limit of storability,
and monomethylhydrazine is still likely to freeze. At Mars all of the oxidizers
and methane are well above their boiling points at 90 psia; therefore, insulation
is always required for closer approach to the sun. The diborane is storable
in this region and somewhat beyond, but MMH still requires insulation to pre-
vent freezing. At Earth, all of the oxidizers, methane and hydrogen are
cryogens, while diborane is storable. MMH is essentially storable between
Earth and Mercury; however, at Mercury all of the fuels and oxidizers may
be considered to be cryogens with the exception of MMH which is storable at
pressure slightly above the normal boiling point and below 90 psia.

The calculation of the heat input to the tanks (or in some cases the

heat extracted) is based on a time-trajectory integration of the heat rate.
The heat flow into the propellant is given by

T
H =ﬁ[ 2KdT; cal/sec (1)
djr
1

where

A = the total surface area; m?2

d = the insulation thickness; m

K

the thermal conductivity; cal m/sec m? °K

T

temperature; °K
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For the case of evaporative storage, the interior surface temperature (T))
of the propellant tanks is assumed to be equal to the fuel or oxidizer at

the boil-off (constant saturation) temperature. The surface temperature (T)
is assumed to be equal to the equilibrium wall temperature, which is given

by
L
T, = <ﬁ><ﬁé><i> 4.k (2)
2 € AE o

o, = the surface coating absorptivity

where

m
1]

the surface coating emissivity

A, = the effective absorbing area; m?
Arp = the effective emitting area; m?
2

S = the solar constant; cal/sec m

¢ = the Stefan-Boltzmann constant

The solar constant is given by

S 3 |
S‘—‘—R—z- (3) |

where R is the distance of the spacecraft from the sun. As shown previously,
the thermal conductivity (K) is given by

K =0.383 x 10-8T + 0,.89984 x 10-13T3; cal/m sec °K (4)

Therefore, I

T
2
2 4
[r KdT = 0. 1915 x 10"8<T22-T1 >+ 0.22496 x 10'14<T2 -1'14>; cal/m sec. (5)
1

For a given fuel or oxidizer,

2 -8, 2 -14_ 4
- KdT = 0.1915 x 10 T, +0.22496 x 10 T, -Cj; cal/m sec. (6)
1
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where

4
Cy=0.1915 x 10787 2 1+ 0.22496 x 10-14T * .

1 1’

Substituting Equations (2) and (3) into (6), the heat flow into the propellant
is then

T c, C,
KdT = — + —3- C3 (7)
J1, R R
where
1
. A S 2
- (04
C. =0.1915 x 10" <i> —A<T°> ;
1 € A
E
and

‘ e\ /a\/s
C. =0.22496 x 10~ 4|(—==) (=2 )=2) |,
2 € AE

The total heat input (Qqy) is

A t, -Tp
QIN =E / KdTdt; (8)
Jtp - T1
or, from Equation (7)
A [tZ cC, C» )
QIN = — — + — - C,y) dt; (9
IN d. ‘) R R2 3

where t; - t] is the exposure time of the propellant module under
consideration, Integration of Equation (9) results in

AlcyaVi-e? (AE) +Cy(av
Qnﬁ:[ | aVi-e (i) 2 )_C3(M)} o)
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where

[\
"

semimajor axis of the heliocentric conic

o
n

eccentricity

AE = change in eccentric anomaly

b
<
"

change in true anomaly

At = exposure time

h

angular momentum

The heat absorbed by the propellant for the evaporative storage case is
given by

Q =mlL; cal (11)

where m is the fuel or oxidizer allowed to boil off and L is the heat of
vaporization.

Equating the heat input [ Equation (10)|] and the heat absorbed
[Equation (11)| results in the following expression for the propellant boil-
off mass as a function of the insulated area, the insulation thickness, and
the heliocentric trajectory characteristics:

W

A [c1 avl-e? (AE) + C, (av)

= - C, (At 12
BOIL-OFF " 37 n 3 (At) (12)

The optimum relationship between the boil-off propellant and the insula-
tion thickness is obtained by minimizing the total spacecraft mass. The mass

ratios for a two-stage vehicle are given by

WpLt Wy + Wep + Wingy + Wins2 + Wp) + Wp, + W,

My = . (13)

WpL * Ws1 * W + Wing: + Wins2 + Wpp + W,

and

Wpp + Weo + Wing2 + Wpp

Wpr * Wsa + Winsa

by = (14)
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Wpy, = payload mass
WS = stage mass
Wins = insulation mass

Wp = propellant mass

W = boil-off propellant mass between the use of the first and second

stages.

The initial spacecraft mass is given by

where, in addition to the previously defined variables,

Wy = total boil-off propellant mass.

Combining Equations (13), (14), and (15),

Wo =1 lWBZ + Wgy + Wins1 + H2 (WpL + Wgp + Wins2)

For a monopropellant (nuclear) stage, let

N AK,
Bl ™ gL’
w Ay K,

B2 =
d, L

(16)

(17)

(18)

where K; and K are determined from Equation (12). The insulation mass is

given by
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Wins1 =£19; Pins (19)

WiNs2 = Axdy PINS (20)

where pyng is the insulation density.

Therefore,

AK,

WO = P-l + WS]. +A1d1 pINS + HZ(WPL + WSZ + Azdz ple) (21)

dZL

AK, AK,
+ +

d;L  d,L

The optimum insulation thicknesses are then

Ky
d = — 22
lopt By Prys L (22)
and
. K, +# K, o
= 23
2

The optimum boil-off propellant requirements for the two stages are then

w A M 1K1 PINs (24)
Blopt 1 L
and
Ky By P
opt (K1 + PIKZ)L

'SD 67-621-3
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where W”BZ is the boil-off propellant of the second stage prior to the use of
the first stage., The above method can be extended for any number of stages
and to include the case of bipropellant propulsion stages. The extension of
the above equations were incorporated in the SD-developed Weight Synthesis
digital computer program for computing the insulation thickness and pro-
pellant boil-off requirements during the mission/system analyses

(Appendix D).

Tables 10 through 13 were prepared to illustrate the propellant tank
insulation requirements for missions to Mercury and Jupiter, The results
include an additional 50 percent heat transfer to cover the effects of struc-
tural supports attaching the insulation to the module structure. As noted
previously, the heat transfer is arbitrary but was included to account for
some heat leaks through the insulation, As in the previous part of the study
to determine the external skin temperature, an absorptivity-to-emissivity
ratio of 0,2 was assumed, In general, the insulation requirement is no
greater than 2, 54 cm (1 inch) even for the most cryogenic application of
superinsulations, It is significant that similar amounts of insulation on a
weight-per-square-meter basis are required to keep the monomethylhydrazine
from freezing during transfers to Jupiter (Ganymede PEM) as are required
for keeping liquid hydrogen from boiling on a mission to Mercury.
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RADIATION ENVIRONMENT AND PROTECTION

An analysis has been performed to determine the effects of the space-
radiation and the Jupiter trapped radiation environment on spacecraft design.
The analysis of the space-radiation environment can be carried out by two
different methods. One is to calculate the expected solar environment for
the mission being considered from statistical correlations obtained from
past solar events. This technique provides the most accurate expected par-
ticle fluxes and doses possible from the available data. The other method is
to obtain analytical representations between solar and mission parameters
which can be combined to yield mission fluxes and/or doses. While this
second technique is somewhat less accurate, it has the advantage of easy and
rapid computation and is thus desirable when many mission and vehicle
combinations are being considered.

The work described in the following sections is concerned with the
development of an analytical representation of the space radiation dose
expected on a deep space mission. The development of the analytical
representation incorporates those factors known to have major effects upon
the mission dose while neglecting factors considered less important.

A short bibliography dealing with solar, Van Allen, and galactic sources
of nuclear radiation is listed in References 2 through 15. !

SPACE RADIATION ANALYSIS

The development of an analytical representation for mission-dose
calculation is composed of several parts. These parts are discussed
separately in this section, then incorporated into the final equation in the
next section.

Solar Radiation

Solar flare radiation is usually treated statistically, since our knowl-
edge of the physical mechanisms involved does not currently permit a
deterministic treatment. There have been several studies (References 2,
3, 16, and 17) of the probabilities of solar flare radiation, most of which
were averaged over the years since 1956. Two of the most-referenced studies l
are those of Webber (References 2 and 3) and of Modisette, Vinson,
and Hardy (Reference 16). Webber obtained his probabilities by '"flying" a
series of hypothetical missions, starting a new one each day. Modisette,

- 45 -
SD 67-621-3

[ Tos



Vinson, and Hardy used a Poisson-distribution function which was extrapo-
lated to low probabilities after being normalized at high probabilities. These
two probability functions are shown in Figures 14 through 16 for mission
durations of 4, 26, and 104 weeks,

These probability functions agree fairly well for probabilities > 10 per-
cent. Each method has limitations in the low-probability region. The
overlapping hypothetical missions of Webber are not independent, and cannot
be treated as statistically isolated. On the other hand, the extrapolations of
Modisette, Vinson, and Hardy are (for the longer missions) based on only a
few points which fit a curve better than a straight line. The direction of the
curve is toward a decrease of the proton fluxes at low probabilities, thus
decreasing the disagreement between the two analyses.

It is possible to approximately fit the proton flux probability curves by
a function of the following form (Reference 18):

(1)

where
fcb is the mission flux (protons/centimeterz\ > 30 Mev

t = the mission duration (weeks),

ﬁ3=2.5x10'4

and
Nn=0.5

The comparisons of Equation 1 with the analyses of Webber and of
Modisette, Vinson, and Hardy are also shown in Figures 14 through 16.
The agreement with these analyses is better for long duration missions
(t =26, and t = 104 weeks). For short missions (t = 4 weeks), the compari-
son is poor. However, planetary mission durations of less than 26 weeks
will not take place based on current technology projected into the foreseeable
future.

For low probabilities (less than 10 percent) Equation 1 lies between the
analysis of Webber and that of Modisette, Vinson, and Hardy. As discussed
previously, this represents a compromise in the probability region where
each analysis has limitations.

- 46 -
SD 67-621-3




11Ot

SMPdM ¥ =3 ‘NV [ 18 UOISSIN
M9 -INOJ ® 10J S3131{1qeqOoId Uojolq dI1elJ I1e[og Jo uostzedwon 1 axndig

(;W2/d) AIW 0E < e\

60!

L

- .

~ (NIW ¥V109) £ NOILvN
(XYW ¥V108) (1) NOILvno3 =

ETH
. -
= ™
. '
—- - " -
- — s -

- 61 DN

SR e ol DN — —— (]

- - T IDNTIN

Om Ak ol e .

- .o
Pees e+ e .

e ease e g

L . DU Sy

- . N v— e s e T A

P S

R L e

PN

o _ %10

R

R PO 11

%01

¢/ ONIQ3IDX3 40 ALMIEVEOU

- 47 -

y

SD 67-621- 3



SM93M 92 =3 ‘NIV T 3® UOISSIN
N99M -9 ® I0J SanI[iqeqold uojold 2Ie( 1BT0S JO uostredwo)y Sl

(WD/d) AIW 0g< & \

010! g0!

sxndrg

N\
\
\
N\
N
N
._I.
R

T
T > T T

T T .. (NIW¥Y10$) £ NOILVND3

H]

- (XYW ¥V105) | NOLLYNO3

X RO

X l Z IDNFYIAN

-+..T PRC

91 DN = =————

T —————

-

%10

L

%01

%001

¢f ONIQ330X3 4O ALNIeVEOdd

- 48 -

SD 67-621- 3




SM33M ¥OT =3 ‘1V I 3B UOISSIN
M99 M -$0T ® I0J S31I[1qRqOIg U0j}0Ig 21e[J Iejog jo uostzedwo) 91 axndry

G\Oz_ommuxm 40 AlLNIgvEOdd

010! 0! g0l 0! 60l

T 1 T T

- ;

b ‘ 1

P

;
B + - -
ot

G e EL
H

T (NIW ¥V108) £ za:éom_‘.m_.“w.wdﬁ?

e P )

L (XYWIVIOS) | NOWVNOI = =amse ==
TOL T ol IONEMR T

R 2 TN e FE

%1°0

?

%01

%001

(zWD/d) AW 0t < ¢ [

- 49 -

SD 67-621- 3



The approximate ll-year solar cycle has a major effect upon the
nuclear space radiation environment, There have been three published
studies specifically concerned with the solar flare radiation activity at solar
minimum. Webber (Reference 3) obtained the relationship

7+ 0.02 Ry (2)

[¢ >10 Mev (p/cm2 - year) = 10
where Ry is the annual smoothed sunspot number.l Based upon this formula,
since the average of sunspot numbers at solar maximum is approximately
100, the average of fcby > 10 Mev should be 109 protons/centimeter2 - year,
At solar minimum, which has an average sunspot number of 10, the average
of f¢>y > 10 Mev should be about 1, 6 x 107 protons/centime'cer2 - year.
Therefore, a ratio of approximately 62.5 between the 10-Mev flux at solar
maximum and solar minimum is expected.

A second analysis was carried out by Weddell and Haffner (Refer-
ence 19), who obtained the relationship

8.9 + 0.004 Ry

/¢y > 10 Mev (P/cm2 - year) = 10 (3)

Based upon this relationship, the average ratio of fd’y >10 Mev at solar
maximum to that at solar minimum is approximately 2. 5. This ratio is
appreciably less than that obtained by Webber, probably due to the influence
of the 23 February 1956 solar event.

A third relationship, developed by Haffner (Reference 6-19) is

/;y > 10 Mev (P/cm2 - year) = 5.5 x 105 (Ry_l)2 (4)

Based on this formula, the proton flux ratio at solar maximum to that at solar
minimum is approximately 100, While this ratio agrees fairly well with that
of Webber, this formula essentially omits the anomlous event of 23 February

1956.

1
The sunspot number (R) is defined as (Reference 16):
R=k(f + 10g)
where g is the number of disturbed regions on the Sun (single sunspots or groups of sunspots); f is the total number

of individual sunspots; and k is a factor assigned to a particular observer, Records of sunspots have been kept
for over two centuries and the resultant smoothed sunspot number are shown in Figure 1-1 of Reference 80.
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Therefore, a factor of 10 between /¢>10 Mev p/cm2 - year at solar
maximum to that at solar minimum represents a conservative estimate. Use
of such a ratio has a high probability of overestimating the solar flare radia-
tion in quiet years and a low probability of underestimating it at any time.
However, mission shielding requirements are relatively small (less than
5 gm/centimeter?), except for missions undertaken during years when the
sun is active.

To account for the effects of the solar cycle, it is necessary to modify
Bin Equation 1. Based upon a factor of 10 in annual proton flux between solar
maximum and solar minimum, it is necessary to increase B to approximately
8.5 x 10-4 (2.5 x 10-% x \/1—6) at solar minimum, Thus, for the same proba-
bilities, the mission proton fluxes will be a factor of 10 lower. In addition,
it is required that B vary approximately sinusoidially between these limits.
This can be accomplished if:

2
5.5 + 3 cos [11 (year - 1%5)]
p = S ' (5)
10 l

where 1965 was the year of the most recent solar minimum, Substituting
Equation 5 in Equation 1 yields

2w
— (Year - 1965)
P(t) = exp |- 5.5+ 3 cos 114 ]l /_[? (6) !

10

At solar minimum, this becomes

/L2

- 8.5x 10" t

P(t) =e (7) I

This equation is also plotted in Figures 14 through 16.

These expressions were obtained from the data for the past solar
cycle (Cycle 19). Therefore, they can be applied to future solar cycles
only if it is assumed that future solar cycles will be like the last one.
Several analyses (References 4 and 19) of the peak sunspot number expected l
on the next solar cycle have been reported. These analyses all yield peak
sunspot numbers in the 80 to 140 region, as contrasted with the 189.5
recorded on the last cycle. (Since the last cycle was the most active ever
observed, the use of the above equations is believed to be conservative
when applied to future solar cycles.)
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There is a simple relationship between solar flare proton flux and
the corresponding point dose. The point dose is essentially a linear function
of the flux above the shield cutoff energy (Figure 17). For the case shown,
the proton flux above 30 Mev is proportional to the point dose behind
1 gm/centimeter? of aluminum. The relationship (Reference 21) is

Dp (rads) = 5 x 10-7/ ¢ o > 30 Mev (p/cmz) (8)

The scatter of dose points about this straight line is due to individual differ-
ences in the proton spectral shapes. However, the majority of the proton
dose is contributed by protons whose ranges just exceed the shield thickness.
This is a consequence of the fact that they are much more numerous than
the higher-energy protons and that their dose effectiveness is also higher
because of their high linear-energy transfer (LET), Similar relationships
hold for shields of other thicknesses.

In dealing with solar-flare radiation doses, the effects of both the
protons and the alpha particles should be considered. Alpha-particle energy
spectra have been measured for many of the larger events since 1958, For
only those events for which both proton and alpha particle spectra have been
measured, the aggregate spectra on an energy -per-particle basis are quite
similar (Figure 18). The ratio of incident protons to alpha particles is
about 1, 2 on this basis. However, two effects must be considered as con-
tributing to the dose. The first is that the alpha particles have shorter ranges
than protons of the same energy. Therefore, the ratio of protons to alpha
particles increases as shield thickness increases. However, due to their }
higher LET, each penetrating alpha particle has four times the rad dose l
effectiveness and about twenty times the rem dose effectiveness as the cor=-
responding penetrating protons. The results of calculations are multiplicative
correction factors which must be applied to solar-flare proton-dose calcula-
tions (Reference 21 and Figure 19).

The solar flare dose versus shield thickness relationships can be
obtained for an isotropic flux with an integral proton energy spectrum of the I
form (Reference 21)

¢$(E>E )= A (protons/centimeter2 - event) (9)
. o E 1. 55
o
where E is the proton energy (Mev) and A is a normalization constant. l

If the proton range-energy relationship is represented by the simple
equation
(10)
R= gER

- 53 .
SD 67-621-3

(e



1000

100

o
o
—

(W2/s3101Eve) (°3<Def

108
10

E, PARTICLE ENERGY (MEV)
Comparison of Solar Flare Proton and Alpha Particle Integral

Energy Spectra (Summed Over Events for Which

gure 18.

i

F

Both Spectra Were Available)

- 54 -

621-3

SD 67-




10 ——

- :
!
B

]
——te
. }
!
§
|
t
1
i
i
i
1

R b 'i
IR IPSEER SR ISR I R e -t ;
: i Ve | .
2| shtte e L
e 3 Pl S i ‘
<> | i : L 3:|
DE ¥ , : . | ” I .
Oz i S o § a
Zig o | : : : i i :
oz I T - ; - S —
4 [¢] " I e :
gZ I R Ak ! ‘
D B e e ey FRTEY I AN : :
< i . : : : |
T|& o R i :
a. e 1 . i '
:(' A I REEE ' '
3 e ; i 1 .
R : ' '
,' \' : : i
,
: N i

——— —_———————.

CORRECTION FACTOR
MIE SN
-
P Lo
|.
=
1
|

b LT Rem pose o

! N R ! ~ -
. R .

i " -~ |
e . - P Y | .

o -

- C. N P . . . ~ 4

1 ' N . .

. L . . . * -

. s ! E

A
\

\ N . ' ‘

"\ : . C ~—— . . |

N PARTICLE FLUX | o]~ me | .
\ ' | C 1‘

S N O A ]
NIttt N I !
o . . |

[

|

i
. * . ..-_%. R oS
l

I - S R N B TE Y i-v--a “ v he e

0 2 4 6 8 10 12 14
ALUMINUM SHIELD THICKNESS (GM/CMZ)

Figure 19 . Calculated Multiplicative Correction Factors for Solar Flare
Protons to Include Effects of Solar Flare Alpha Particles

- 55 -

—

Y SR

1

SD 67-621-3



a proton of incident energy Eo will emerge with an energy E' after penetrating
a thickness X (gm/centimeterz) of shielding where

1M
Bl - [E . _X_] (11)
o 6

where
. 2
R is the proton range (gm/cm")
6and n are constants

6= 3,47 x 10-3
for aluminum
n=1,73

Therefore, the integral energy spectrum of solar flare protons after pene-
trating a shield thickness X is

$(E>E ) = A (12)

[E Nt X 1.]55
(o] 5 il
The corresponding differential energy spectrum is

1.55 AE ""! aE

« 1.1155 + 1
EN 4

The Gibson flux (Reference 22) to rad dose conversion function C(E) can
be fit by an expression

¢ (E, X) dE = (13)

-C1 CZ I
C(E) = BIE + BZE (14)
where
B, = 4x 1008 )
B, = 6x 10-10
L constants for tissue.
Cl = 0. 8
C, = 0.85 J
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The proton rad dose is the integral

D(X) = [ ¢(E, X) C(E) dE (15)
-0

where ¢ (E, X) and C(E) are the functions defined above, Unfortunately, this
dose integral cannot be evaluated in closed form, so calculations were carried
out graphically, The results are shown in the bottom curve of Figure 20.

The other curves of Figure 20 were obtained from the proton rad dose
calculations described first and the alpha particle dose correction factors
shown in Figure.19. It will be noted that these calculations neglect second-
ary radiations produced by nuclear interactions initiated by the solar flare
protons and alpha particles. These secondaries are negligible for shield
thicknesses less than 10 gm/centimetérz, and do not become important until
thicknesses on the order of 30 gm/centimeter2 are reached.

It is possible to approximate the curves of Figure 20 by straight-line
expressions of the form

Dl
D’ (rad) = —E— (rad) (16)
P Xl.Z

% D1+a 1.4 DI];

Dp+a (rad) =_Ll 3 (ra.d) = —T.T (rad) (17)
X" X
1 1
D* (rem) = Dp+a (rem) = 4Dp (rad)

p+a 1.6 L. 6 (18)

These expressions have an error of somewhat less than 20 percent over the
thickness range of 0.5 to 20 gm/centimeter?,

The sun-to-spacecraft distance (r) is an important parameter in the
analysis of the expected mission space-radiation dose. The small amount of
experimental data available indicates an r-kK dependence, where k apparently
lies between 1 and 2, The various theoretical treatments of solar flare
radiation either assume or derive expressions of approximately r-2 (Refer-
ence 19). Since the probability of receiving the solar-flare radiation must
decrease as some function of distance, an r-2 dependence is a reasonable
assumption. The present analysis assumes that the event probabilities are
independent of r, but that the particle fluxes decrease as r-2,
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-2 C .
The average value of r  for a given mission leg is

t

-— 2
<_rl_2_> - & <:12_> dt (19)
t1

where

At = transfer time

r = heliocentric radius of the spacecraft

and

t1 = mission time
However,

1 1
<_2_> at = (K) av (20)

from which

1 1 1 |
<_2_>_A—t = dv (21)

or

1 Av *
<?> " hat (22)

*Note that, as can be inferred from Equation (10) in the previous section, if the dosage varies as 1~ 1 then
(1>= avi-e2 (AE)

—_— T —

r hAt
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where

Av

change in true anomaly of the heliocentric conic

h

angular momentum of the heliocentric conic

The above expression can be extended to include any number of mission legs,

i.e.,
— Av Av Av Av
1 1 ( 1 2 3 n>
—\== + + oot (23)
(rZ) t h1 hz h3 hn

where t is the mission duration. For the planetary parking orbit phase of the
mission, the planetary heliocentric orbital elements are used to define Av
and h.

Thus, the basic equations are

P(t) = e (N

where

5.5+ 3 cos |:—21—1—1T (Year - 1965)}

B = (5)
104
5 x 10'7[¢
D (rad) = (8)
P 2
Ir
1 1.3
D (rad) =0.72X D (rad) (17)
P +
D= (rad) = 0.25 X 1.6 DX (rem) (18)
pta
_— Av Av Av Av
1 ) ( ] 2 n>
== + + +eoee + (23)
<r2> t hl h2 h3 hn
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It is a relatively straightforward matter to combine these equations to yield

gm ) _ . I 0,77 -1n P(t) 1.54
X 5 26 i > — (24)
cm Dp+a (rad) r 10" B
 /em) i ¢ T 0. 625 -1n P(t) 1. 25 (25)
2 X 2 4
cm <Dp+o. (rem)/\r 10" B

1
In these and subsequent equations, t is in weeks and (_) is in AU-2,

r2

These equations yield the aluminum equivalent shield thickness X
required on a deep space mission to protect a point dosimeter from exceeding
a solar flare radiation dose D%)(dl.c1 with a probability P. The other inputs
required are the year in which the mission largely falls, the mission duration
time and the maximum and minimum sun-to-spacecraft distances.

The formula given in Equations 24 and 25 requires further modification
to incorporate the galactic and Van Allen radiations. It is also necessary to
investigate the analysis of missions whose durations are not short compared

with the ll-year solar cycle. These matters are considered in the following
sections.

Van Allen Radiation

The space, time, temporal, and energy distributions of the geomag-
netically trapped radiation (Van Allen Belts) have been investigated and
reported by dozens of researchers (References 11 through 14), As a result it
is possible to calculate rather accurately the particle (electron and proton)
fluxes and doses expected along any desired trajectory. Several computer
programs (References 24 and 25) have been written which yield these quanti-
ties directly once the trajectory is known,

For deep space missions, it is possible to make simplifying assumptions
with little effect on the radiation shielding required. Presumably, any
passage through the geomagnetically trapped radiation will be done by high-
thrust vehicles. For a chemical rocket travelling radially through the radi-
ation in the plane of the geomagnetic equator, the point rad dose is fairly
small, unless the shield thickness is less than 1 gm/centimeter?

(Figure 21). For deep space missions undertaken at solar maximum, the
trapped radiation contributes less than 3 percent of the mission dose, often
less than 1 percent (Reference 21). For missions at solar minimum, these
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numbers may increase to approximately 5 percent, with 3 percent being far
more common. For this study, it was assumed that the geomagnetically
trapped radiation dose amounted to 3 percent of the solar radiation dose for
all missions.

This assumption is conservative except for shorter missions (less than
six months) undertaken when the sun is quiet. It is equivalent to the assump-
tion that the geomagnetically trapped radiation is attenuated like the solar-
flare radiation. A comparison of Figures 20 and 21 shows that this is not
true. However, as the shield thickness required for solar flare radiation
increases, the ratio of the geomagnetically trapped radiation dose to the solar
flare radiation dose decreases. Thus, the hardness of the trapped radiation
energy spectrum tends to balance the variation in the ratio of their doses, so
neglecting both introduces relatively little error. Uncertainties in the future
solar flare radiation environment mitigate against further refinements in
accounting for the geomagnetically trapped radiation.

Galactic (Cosmic) Radiation

In spite of the fact that the characteristics of the galactic radiation have
been studied for approximately 50 years, there is much which is not well
known (Reference 15), The temporal behavior near the earth has been
measured, but the spatial dependence throughout our solar system has not
been investigated to any appreciable extent. The perturbing influences of the
sun and planets having magnetic fields (e.g., Jupiter, Saturn) on the time,
space, composition, and energy distributions are not known except in the
vicinity of the earth. [

Near the earth, flux and dose measurements have been made which
extrapolate to a deep space value of approximately 50 millirads per day (quiet
sun). Since any perturbing influences will decrease this deep space value, a
conservative assumption is to use a time and space constant value of 0.35 rad/
week (Reference 21). The very high energies of the galactic particles make
this value essentially independent of shield thickness as well (up to a thick-
ness of approximately 30 gm/centimeter?), The very low LET of the radia-
tion yields an RBE of unity, so the point rem dose rate may be taken as 0. 35
per week as well.

SUMMARY AND EXAMPLE

It is now possible to incorporate the effects of the geomagnetically
trapped radiation and the galactic radiation into Equation 24. The result is
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(=) (o))

1.54
-{n P
- (26)
2w
5.3 + 3 cos [1—1 (Year - 1965)]
where
D = mission point dose limit (rad)
P = acceptable probability of exceeding D
Year = year the mission takes place
The corresponding equation for a dose limit D' in rem is
g AL 59 1,03 t _1 Ll
2 D' -0.35t¢ 2
cm r
.2
-fnP 1.25
2
5.5 + 3 cos [W(Year - 1965)] (27)

All other quantities are as defined above. As stated previously, these equa-
tions are based upon the assumption that the future solar cycles are as severe

as the last one (Cycle 19). This is almost certainly a conservative assumption.

Mission-dose limits are usually specified for one or more of the human
critical organs (eyes, skin, bone marrow, central nervous system, repro-
ductive organs). In the absence of given values, the following dose limits
may be taken as representative (References 26, 27, and 28).

Dose Limit
Organ (rem)
Skin 600-1000
Bone marrow 150-200
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The other critical organs are more localized and can be protected by special
shielding without much of a weight penalty.

Skin and bone marrow doses (for solar and geomagnetically trapped
radiation) are related to point doses by the following equations.

Skin Dose (X) = 0.5 Point Dose (X) (28)
Bone Marrow Dose (X) = 0.5 Point Dose (X + 5) (29)
For shield thickness (X) less than approximately 5 gm/centimeterz, the skin
dose is usually the determining factor, while if X is greater than approxi-

mately 5 gm/centimeterz, the bone marrow dose becomes dominant. The
Equations 26 and 27 thus become:

-\~ 0,77 1.54
1. 03t |
X =26 KZD . -0.351:)(_2)} [A] (30)
skin r

If rad

dose

—\q0.77 1. 54 rlimits
) 1. 03¢ I
X+5=26 [(zn -0, 351;)(“2’>j| ‘A] (31)
marrow I

- 0. 625 1, 25
_ 1. 03¢t 1
X =59 [<2D . -0. 35t><—2>] [Al (32)
skin r
If rem
tdose
- 0. 625 1, 25
_ 1.03¢ 1 limits
| _,_ﬂ 4] 59
marrow r J
where
- £n P(t)

5.5+ 3 cos [%—:—(Year - 1965)]

As derived, these formulae assume that the mission takes place within
a period of time (e.g., one year) short compared with the l1-year solar cycle.
The radiation dose is considered to be recieved uniformly throughout the dura-
tion of the mission. While the assumption of a uniform radiation environment
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is reasonable (so long as dose rate constraints are not a problem), the dura-
tions of missions considered in this study are generally in excess of one year.
For these situations, it is necessary to use an averaging technique.

While B varies sinusoidally with time, the probability of exceeding a
given solar flare proton flux on a mission of a given duration does not
(Figure 22). However, the shielding thickness (X) required does vary
approximately sinusoidally. Therefore, if an effective year is known, the
equations can be applied for missions of any duration (assuming, of course,
all solar cycles are identical to Cycle 19). The effective year is one which
will yield the same value of

2n

' 104[3 (t) = 5.5+ 3 cos [11 (Year - 1965)] (34)

as would be obtained by averaging this function over the mission duration. If

the mission begins in year Y, and is completed in year Y, the average of the
above function B (t) is

YZ
104m Y—}?— l5. 5+ 3 cos [%(Y - 1965)]
2 1 ¥
1
33

. 2T A 2T
sin [_11 (¥, - 1965)] - sin [——11 (¥, - 1965)] (36)
5.5 + >

2 »
T Y,-Y,

dY (35)

This can be substituted into the expression for A, yielding

B = -BnP

sin | 2" (Y. - 1965) | - sin |27 (Y. - 1965)
33 11 ‘Y2 11 ‘11
5.5 + 2>

2 -
™ Y2 Y1

(37)

- 66 -
SD 67-621-3

»n



100% ~—

1%

PROBABILITY OF EXCEEDI NG]¢ (P/CM2 > 30 MEV)

0.1%

10%F roio

v 7
t § /I
r‘l
7
/.
0.01%% N 1 L 1 i . [ i 1 l 1 | R
1965 1967 1969 1971 1973 1975 1977
1976 1978 1980 1982 1984 1986 1988
1987 1989 1991 1993 1995 1997 1999
Figure 22 .. Theoretical Probability of Exceeding a Solar Flare Proton Flux of

fé(p/cmz >30 Mev) on a Mission of Duration t (Weeks)

- 67 -
SD 67-621-3



The final formulae obtained are, thus:

—\2 0.77 1.54
_ 1. 03t 1 :
X =26 [<ZD ) -0.35t>< 2>} B (38)
skin T
}D in
d
1 03t —\q 0- 77 1.54 ra
X +5=26 KZD 0. 35t>< 2>] B (39)
marrow T
.
- —\~ 0.625 1. 25
1. 03t 1 ’ .
X =59 <2D _0‘35t>( 2>] B (40)
skin r
}D in
— rem
x+5—59- 1 03¢ T 0. 625 .\ 1. 25 "
- 2D -0. 35¢ 2
marrow r
where
B = -dn P (42)
2
sin |27 (Y. - 1965) | - sin |27 (Y. - 1965)
33 11 ‘"2 11 ‘1
5ty Y, - Y T

2 1

As stated previously, the required inputs are
t = mission duration (weeks)

D = mission dose limit (rad or rem, skin or marrow)

1

(——2> = time average value of r_2 (AU-Z)

r

Y) = year mission started (to nearest tenth of the year) -
Y
P

year mission completed (to nearest tenth of the year)

]

probability of exceeding the dose limits

The output is X (gm/centimeter? aluminum equivalent) required for that
particular mission if the probability of not exceeding the dose D is P.
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To summarize, the assumptions inherent in these equations are:

Solar particle fluxes decreases as r

Future solar cycles will produce the same annual particle fluxes as the

past one (Cycle 19).

The probabilities of receiving a given solar particle flux at solar mini-
mum is 0. 1 the corresponding probabilities at solar maximum, with an
approximate sinusoidal behavior in between.

The mission dose due to the passage through the geomagnetically trapped
radiation is 3 percent that due to solar flare radiations.

The galactic dose rate is 50 millirads per day (50 millirem per day)
independent of all variables including distance from the sun, the solar

cycle, and spacecraft shielding.

Secondary radiations are neglected, thus effectively limiting the region
of validity to values of X (shield thickness) to 1 to 20 gm/centimeter?2,
Outside these limits the formula underpredicts the shielding required.

As an example, consider a 1982.0 - 1983. 9 low energy Mars flyby mis-
sion (675-day duration). The assumed mission dose limits are 200 rem to the
blood-forming organs (bone marrow) and 800 rem to the skin. It is desired
to calculate the shielding required if the probabilities of exceeding these dose
limits are 50 percent, 10 percent, and 1 percent. Straightforward substitu-
tion in Equations 40 and 41 yields the following results (gmz/centimeter).

50-Percent 10-Percent l1-Percent

Organ ' Probability Probability Probability

Skin (Equation 40) 0.8 (1.7) 3.6 8.7 (5.8)
Marrow (Equation 41) ~0(1.1) 4.0 16. 6 (9. 5)

The shield thicknesses obtained by detailed analyses are listed in the
parentheses. It will be noted that the formulae developed in this report yield
greater shield thicknesses for low probabilities, and thinner thicknesses for
high probabilities. This is a consequence of the conservatism employed in the

development.
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A reasonable use of the equation might be to carry out calculations for
a 10-percent probable environment. For such situations, the results will
agree well with those obtained by a more exact analysis, while retaining such
factors as biological recovery (via the ERD concept), short-term warning
mechanisms, and the inherent conservation of the approach as insurance.

Equations 38 through 42 were incorporated in the Weight Synthesis
computer program and were used in the determination of the radiation
shielding requirements during the mission/system analyses (Appendix D).
The required shielding requirements were determined and compared with the
inherent spacecraft shielding. If additional shielding was required, it was :
added to a solar flare ""storm cellar' which was assumed to be contained
within the mission module.

The total shielding requirements are shown in Figure 23 as a function
of the year the mission is initiated for missions to Mercury, Venus, Mars,
and Jupiter. The data are based on a 10 percent probability of exceeding
mission dose limits of 200 rem to the blood-forming organs and 800 rem to
the skin. Since the inherent spacecraft shielding is on the order of 3 to V
5 gm/cm2, additional shielding will be required only for missions that occur
during periods of maximum solar activity.

The shielding requirements are given in thickness of equivalent alumi-
num since aluminum is often used as a spacecraft material. As long as the
spacecraft shielding is less than approximately 20 gm/cm? the attenuation of
space radiation is largely determined by low energy protons and alpha parti-

cles (E = 300 Mev nuclear). For these particles the range-energy relation- ‘1
ship is a good approximation. A common form of the range-energy
relationship is
R = 6En (43)
where
. 2
R = particle range (gm/cm”) |
E = particle energy (Mev)
g constants depending on the particle type and shielding material.
n
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If two shields of different materials are equivalent, they both have the
same cutoff energy. Therefore,

E, -E, (44)
. =\~ 45)
%) 52 (
or
X, nz/nl

Thus, a thickness Xé of material 2 is equivalent to a thickness X, of
material 1. Values of n and 6 for some materials are listed in Table 14.

It will be noted that the relative effectiveness of two materials depends
slightly on the thickness considered. For example, 1 gm/cm‘2 aluminum
is equivalent to 0, 895 gm/cm2 Teflon but 10 gm/cm2 aluminum is equivalent
to 9.8 gm/cm? Teflon. This is due to the fact that the constant n is slightly
dependent upon the material, However, due to the fact that the constant n
is independent of particle type (for proton and alpha particles) the relative
contributions of protons and alpha particles are independent of material type
(so long as the equivalent thickness remains unchanged). Thus, the equiva-
lent thickness obtained for two materials are independent of whether proton
or alpha particle constants (n and §) are used in Equation 46.

Table 14. Range-Energy Constants

Protons Alpha Particles
Material n & n 6
Hydrogen 1.817 8.21 x 10-4 1.817 6.62 x 10-5
Beryllium 1,788 2.35x 10-3 1.788 1.98 x 10-4
Carbon 1,787 2.22 x 10-3 1.787 1.86 x 10-4
Aluminum 1.730 347 x 10-3 1.730 3.15 x 10-4
Copper 1.728 4,07 x 10-3 1.728 3.71x 10-4
Cadmium 1.708 4,97 x 10-3 1,708 4.70 x 10-4
Lead 1.680 7.18 x 10-3 1. 680 7.00 x 10-4
Air 1,777 2.39 x 10-3 1,777 2.0 x 10-4
Water 1.793 1.95 x 10-3 1.793 1.62 x 10-4
Tissue 1.783 2.17x10-3 1,783 1.83 x 10-4
Teflon 1. 800 2,47 x 10-3 1. 800 2.17 x 10-4
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JUPITER TRAPPED RADIATION ANALYSIS

Directly observed information relating to trapped radiation belts
around Jupiter consists of nonthermal energy from the vicinity of that planet.
This nonthermal radiation lies in the decameter and decimeter wavelength
regions, and the characteristics of each are discussed here.

In 1954 Burke and Franklin (Reference 29) discovered the existence
of bursts of decametric radiation originating from the direction of Jupiter.
Since the source of the bursts moved with the planet, it was concluded that
they originated from Jupiter or adjacent regions. Subsequent observations

(References 30 through 36) have established the following characteristics of
these bursts:

1.  Burst durations are usually on the order of seconds to minutes,
although shorter (<1 second) and longer (>l hour) bursts have
been observed.

i
2. Bursts are usually observed in the frequency region of 5 to 40 mega- L
hertz. During the burst, the frequency will usually experience
a unidirectional drift of ~ 50 percent (References 37 and 38).

3. The burst intensities vary, ranging up to about 10-20 watts /m2 Hz

at earth.
4. The spatial distribution of the burst source extends to about

3 Jupiter radii. I
5. . The burst radiation exhibits elliptical polarization, especially

in the frequency range of 20 to 30 megahertz (References 39
through 42).

6. Occurrences of the bursts directly correlate with the periods of
Jupiter's inner satellites, especially Io. There appears to be
negative correlation between burst activity and the 1l-year solar
cycle, but there may be a positive correlation with individual
solar events (flares). (See References 43 through 49.)
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In 1956, Mayer, McCullough, and Sloanaker (Reference 50) detected
3-cm radiation from Jupiter. This radiation exhibited relatively small
fluctuations (on the order of a few percent of the steady-state intensity).
The following characteristics have been established:

1. The radiation intensity is ~107%5 w /m? Hz from 3 centimeters
to 100 centimeters,

2. The spatial distribution extends to about 3 Jupiter radii in the
equatorial plane to ~1 Jupiter radius in the polar directions
(References 51 through 54).

3. The radiation exhibits some (~30 percent) linear polarization in
the direction of Jupiter's equator and almost no (<5 percent)
elliptical polarization (References 55 and 56).

4. The time fluctuations correlate with the rotation of Jupiter. An
accurate measurement of the planet's rotation was made possible
by observation of this microwave radiation.

These characteristics of the decameter and decimeter radiations
from Jupiter are discussed in more detail in several review articles (Ref-
erences 57 through 63).

Theories

Various theories have been offered to account for the nonthermal
radiation associated with Jupiter. While approaches based upon electrical
discharges in the atmosphere (lightning), disturbances in the planet (earth-
quakes, gravitational contraction, etc.), and ionospheric phenomena have
been proposed, by far the most probable explanations are based upon the
assumption of trapped radiation around the planet (References 64 through 68).
The spatial distributions of the sources of the nonthermal radiation and the
earth's Van Allen belts' radiation of radio-frequency (RF) energy are
powerful arguments in this direction.

The decimetric radiation is the easier to explain. If an electron is
placed in a static or slowly varying magnetic field (B), it will rotate about
a line of flux according to the relationship

2 m v,

Bev, = ——— (47)

where m is the electron mass, e the electron charge, vf the component of
the electron velocity perpendicular to the direction of B, and r the gyroradius
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of the electron's rotation. The frequency of the radiation that the electron
will emit depends upon the field strength (B) and the electron velocity rela-
tive to that field (v.). If the electron is nonrelativistic, the radiation
(cyclotron) frequency is

Vi Be

where mg is the rest mass of the electron. In this approximation, the
radiation frequency depends only upon the strength of the magnetic field;
however, if the electron is relativistic, the radiated (synchroton) energy
exhibits a series of frequencies given by the relationship

1
Ben;Y= (49)

Q=
n = mgY
vi- (v, /c)2

where n =1, 2, 3, etc. The frequency of this radiation (sometimes called
magnetic bremsstrahlung) depends not only upon the magnetic field strength,
but also upon the electron energy (References 70 and 71).

Calculations have been carried out to determine the magnetic field
strengths necessary to account for the frequencies of the decimetric radia-
tion (3 x 108 - 1010 Hz). (See References 57 and 64 through 69.) If the
radiating electrons are nonrelativistic, a magnetic field of 20 to 600 gauss
is required independent of electron energy. On the other hand, if the radiating
electrons are relativistic, the required fields are~0.1 gauss (10-100 Mev
electrons) to ~ 10 gauss (1-10 Mev electrons). It will be noted that these
are the field strengths at the electrons. (The strengths at the surface of the
planet will be ~30 times as high.) Since it is easier to explain a surface
magnetic field of~3 to 300 gauss than one of ~600 to 18, 000 gauss, syn-
chrotron radiation from relativistic trapped electrons is the most probable
source of Jupiter's decimetric radiation.

The origin of the decametric radiation is less clear. The burst
occurrences' correlating with the orbit periods of Jupiter's large satellites
suggests that it may be bremsstrahlung emitted when the electrons hit these
satellites (References 72 through 74). Such bremsstrahlung is directional
at high energies, so its detection at earth would be possible only when the
emission cone was pointed toward earth. The fact that the orbit periods of ,
Io, Europa, and probably Ganymede correlate with the occurrences of these ' L
decametric bursts strongly suggests that the trapped radiation extends past
their orbits.
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Magnetic Field Calculations

If it is assumed that the decimetric radiation received from Jupiter
is due to synchrotron radiation from relativistic electrons in a dipole magnetic
field, it is possible to calculate various parameters of the Jovian Van Allen
belts. The equatorial magnetic field (By) is basic to these calculations,

and, therefore, it is necessary to establish probable values of this field in
order to proceed.

For any equatorial magnetic field strength, there are two limiting
electron populations: the number of electrons necessary to account for the
intensity of the decimetric radiation received from Jupiter, which number
varies inversely with Bp, and the number of electrons the magnetic field
can stably contain, which number varies directly with the square of Bo.

The minimum possible equatorial field (Bo) is that in which these two electron
populations are equal. ‘

The intensity- (power per unit solid angle) radiated by a single electron
in a magnetic field is (References 70 and 71).

22 m2 2 1\2
In Ak Ul + ‘(tane - By seco) Jn (él—gz)ﬁ_L cos@ +B, <Jn> (:;Q)Blcose‘

2mche e e

(50)
B=v/c
Y =

1
/Ql-hdﬂz

e = electron charge

B = magnetic field intensity

v = electron velocity

c = velocity of light

n = harmonic number (1, 2, 3, etc.)
A=(1=p,) sin 6 |

6= angle of observation relative to direction of B
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V; and v;; are velocity components perpendicular and parallel to B,
respectively. Calculation of the radiation intensity for an assembly of
electrons is difficult but has been done through one or more approximations
by various authors (Reference 71). The important aspect here is that the
intensity per electron varies directly with B, so that the number of electrons
required to achieve any given radiation intensity varies inversely with B.
For electrons in Jupiter's magnetic field, the relationship is (Reference 57)

N. B ~ 1028 electrons gauss (51)

where B is the magnetic field intensity at the heart of the electron belt.

For the earth's Van Allen belt, the intensity of the electrons is a maximum
at about 3.5 Re. Since dipole fields drop off as r-3, the intensity at 3.5 Re
is 0.023 that at the equator. As a first approximation, it is assumed that
the ratio of magnetic field strength at the heart of Jupiter's electron belt

to that at the equator is 0.033. This corresponds to a peak at 3.1 Ry, meas-
ured from the center of the dipole.

The number of electrons that can be stably contained in a magnetic
dipole field has been calculated by Kennel and Petschek (Reference 75).
They were able to show that as the particle density increases an unstable
condition is reached in which plasma waves exchange energy with the gyro-
rotation of the particle, leading to particles being ''shaken out' into the
planetary atmosphere. In addition, an asymmetric pitch angle distribution
makes the particles particularly susceptible to whistler mode instabilities.
By calculating the electron and ion densities at which these perturbations
will propogate without attenuation, Kennel and Petschek were able to esti-
mate an upper limit to the fluxes of stably trapped particles in a dipole field.
Electron fluxes calculated this way agree well with measurements in the
earth's Van Allen belts.

The basic formula developed by Kennel and Petschek is

(l %) <nzceR> BInG

ER) = 52
g (>ER) — 7 (52)
Q/w -1

2

where ¢ (>ER) is the omnidirectional electron flux (electrons/cm“-sec)

above the resonant energy, ER

w is the plasma frequency (sec-1l) = 41N e /m

N is the electron density (cm’3)
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m is the electron mass (gm)
e is the electron charge (esu)
A is the anisotropy in diffusion equilibrium (typically 1/6)

Q2 is the cyclotron frequency (sec'l)

e B
mec

Q=

B is the magnetic field strength (gauss)

G is the wave gain in one traversal of the active regions of a magnetic
tube of force (In G~3)

£ is the effective length of a line of magnetic flux in units of planetary
radii

Under most conditions, 2>> w (i.e., the cyclotron frequency is appre- )

ciably greater than the plasma frequency). For a dipole field, £ ~ L (the
Mclllwain parameter).

The resonant energy (ER) for magnetically trapped electrons is given
by the formula

ER = E, (%)(1 -%)3 (53)
B2
87N

where E. = = the magnetic energy per particle.

Since B« r-3 for a dipole, the formulae shows an ~r-4 dependence
for the particle fluxes above ER. The total number of trapped particles
based upon the assumption of spherical symmetry is

A r
[N-P-f o z-dr—4"6R4<1 1 >~4"8R3 (54)
= VA S el vk
T min

4nr
(-?{_) min ma 3c

where R is the radius of the planet

Ymax i8 the radius of the magnetosphere
$¢is the electron flux at r ;.
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The radius of the magnetosphere is obtained by equating the energy

densities of the solar wind, W(¢,,), and of the planetary magnetic field, W(B).

The relevant equations are

By cos 6

B (r, 0) = 3 (55)
(&)
2
W(B) = B (56)
2o
W(y) = N- 1/2 M, v2 (57)

where By is the equatorial magnetic field strength

By = 4mx 10‘7

N = proton density in the solar wind at 5.2 AU
M, = rest mass of a proton
v = directed velocity of the solar wind at 5.2 AU

While N and v are somewhat uncertain at 5.2 AU, to a first approxi-
mation W(fy,) probably decreases as r-1 to r-2, At 1 AU, W(@w) is

~2 x 10-10 joules /m3, so at 5.2 AU a reasonable value is~4x10'lljoules/m3.

Therefore, the equatorial (6 = 0) value of r for the magnetosphere in terms

of B is
R - Y10¢ B (58)

Tmax ~

It is seen that ryay > I'ynips SO that

N3
R
[N~ m (59)

C

The minimum Jovian magnetic field can be calculated from the pre-
ceding. In Table 15, various values of By (the equatorial magnetic field
strength) and the corresponding values of the field strength at ~3 Ry (where
the electron flux is presumably a maximum) are listed. For each value of
Bo, the radius of the magnetosphere (rmax) is determined. The required
number of electrons (to account for the observed intensity of the decimetric
radiation) and the required effective energy of these electrons (to account
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for the observed frequency of the decimetric radiation) were calculated from
Equations (51) and (49), respectively. The maximum number of electrons
with energies >40 Kev that could be stably contained in each field was cal-
culated from Equations (52) and (54). To bridge the difference in energies
(40 Kev to Ee) it was necessary to assume a spectral shape. In the earth's
Van Allen belts, the slope of the electron energy spectrum decreases as

the magnetic field strength increases, reaching~E'2' atr = 1.5 Re.
Various authors (References 57 and 63) have concluded that the Joviantrapped
electrons probably have a spectral shape of ~E"1 close to the planet. Such
an assumption is not incompatible with the spectral-slope-magnetic-field-
strength relationship observed in the earth's Van Allen belts (so long as

the Jovian equatorial field strength is at least a few gauss). Therefore, an -
E-1 integral spectral shape was assumed to hold for the region >40 Kev at
the heart of the Jovian electron belts. This made possible the direct com-
parison of the two electron populations: the number of electrons that can

be stably contained and the number of electrons that are required to account
for the observed intensity of the decimetric radiation. The last two columns
of Table 19 show that an equatorial field (Bg) of at least 2 gauss is required.
(It should be noted, however, that if the peak flux occurs at less than 3. 1 R7,
Bo can be less than 2 gauss.) A weaker dipole field will not be able to hold
all the electrons it needs to account for the decimetric radiation. It is quite
probable that the field is stronger than this. A number of researchers have
concluded that Bo may be as large as 15 gauss. To obtain a feel for the
range of fluxes and dose rates in the Jovian trapped radiation belts, three
cases were considered: :

Low case By = 2 gauss
Probable case By = 5 gauss

High case By = 15 gauss

Dose Rate Calculations

The electron fluxes as a function of position in the equatorial plane
were calculated for the three values of B,. An L-4 distribution was assumed,
based upon the work of Kennel and Petschek (Reference 75)., To normalize
this distribution, two different approaches were used. One approach was
to calculate the peak flux, f, from Equation (8) for r~3 R3j. The second
approach was to assume that if a magnetic field of ~7 x 10-3 gauss (the value
of the geomagnetic field at 3.5 Re) could hold ~109 electrons /cm2-sec> 40 Kev
(the approximate value of the peak electron flux) in the earth's Van Allen
belts, a similar field could hold a similar flux at Jupiter. The peak fluxes
(electrons /cm2-sec >40 Kev) calculated this way agreed with each other to
within a factor of 5. The values selected for 3 RJ were the averages of
these two. The peak locations, however, were taken to be at 0.1 the radius
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of the magnetosphere, which reduced these peak fluxes somewhat. This
was done because of the possible off-center location of the Jovian dipole
and to bring the proportions of the spatial distribution of the trapped radia-
tion more in agreement with those of the earth's Van Allen belts. The
influence upon the fluxes at Io was < a factor of 2 and was negligible at the
other satellite (Figure 24).

The calculation of the electron dose rates on each of the four large
Jovian satellites was based on the integrals of the form

DR (x) =/ p(E', x) C(E')d E’ (60)
(o]

where DR (x) is the electron dose rate as a function of the shield thickness

0 (E', x) is the emergent electron energy spectrum as a function of
shield thickness

C (E') is the flux-to-dose conversion function
E' is the electron energy after penetrating the shield

Evaluation of these integrals was aided by the fact that C (E') has the
approximately constant value of 3 x 10-8 rad-cm? /electron (Reference 76
Thus, it was only necessary to calculate the electron flux above the shield
cutoff energy and multiply by 3 x 10-8 to obtain the rad dose rate. The

shield cutoff energies were read from range-energy tables for electrons
(Reference 77).

To obtain the electron flux above the cutoff energy for any shield, it
was necessary to make some assumptions concerning the shape of the electron
energy spectrum. As pointed out, this spectral shape is a function of the
magnetic field strength. At 3.5 Re in the earth's Van Allen belts, the
integral electron energy spectrum is approximately E-3 (Figure 25 and Ref-
erence 78). The magnetic field strength at 3.5 Re is ~7 x 10-3 gauss. At
Ganymede (the satellite of primary interest in this study) the magnetic field
strength is calculated to lie in the range 6 x 10-4 gauss to 4 x 10-3 gauss.
This is sufficiently close to 7 x 10-3 gauss that the Jovian electron integral
energy spectrum at Ganymede can be taken as E-3 (approximately equal to
that shown in Figure 25). It will be noted that the assumption of an E-! inte-
gral energy spectrum was made at ~3 Ry, where the magnetic field is on the
order of 0.1-0.5 gauss.

The electron dose rates at Ganymede as functions of aluminum shield
thickness are shown in Figure 26. These values were obtained by evaluating
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Equation (60) as discussed. It is apparent at this stage that the uncertainties
in the Jovian magnetic field strength are at least as important as the shield
present in determining the electron dose rates.

It is recognized that there may be trapped protons in the Jovian belts.
Electron bremsstrahlung has been neglected here as also contributing less
than the uncertainties in the Jovian field strength to the spread in values.
Some compensation is provided by neglecting the 2w solid angle shielding
afforded by the satellite at its surface. Another factor of 2 for the self-
shielding of the human body has been omitted for the same reason. Thus,
the dose rates shown in Figure 26 may be taken as skin dose rates.

Ganymede Dose and Stay Time Calculations

To assess the operational significance of these dose rates, three round-
trips from earth to Jupiter were considered. These 200-week missions had
starting dates of 1985, 3, 1987.5, and 1990.8., The shielding required for
each of these missions, in the absence of the Jovian radiation belts, was
calculated using Equations (40) and (41).

Shield thicknesses were calculated for probabilities of 50 percent,
10 percent, and 1 percent for each of the three missions based upon dose
limits of 800 rem (skin) and 200 rem (blood-forming organs). Results are
listed in Table 16 . For comparison, the same calculations were carried
out using an alternative approach (Reference 19) based upon sunspot number
and solar flare radiation correlations. Results of these detailed calcula-
tions are listed in Table 16, also in parentheses. The comparisons show
that the use of Equations (40) and (41) lead to somewhat greater shield

thicknesses for severe solar radiation environments than the detailed analysis.

The agreement in most cases is good, however.

For each mission and each probability, it was necessary to select a
shield thickness as a standard. The philosophy here was to select a shield
thickness that equaled or exceeded that required for skin and for blood-
forming organ protection for at least one of the calculational approaches.
Thus, at least three of the four numbers for each mission and probability
of Table 16 were exceeded. The thickness selected are also shown in
Table 16, boxed in the middle of the four numbers used in their selection.
These shield thicknesses represent the standards used for subsequent
analysis.

To land upon Ganymede during any of these missions, it is necessary
to increase the shield thickness above the standards discussed. If the mis-
sion dose limits are fixed, it is necessary to save some dose tolerance for
the Jovian radiation belt fluxes present at Ganymede. The relationship
between added shielding and Ganymede stay time obviously depends upon
the mission considered and the radiation belt model used. The procedure
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used was to select a shield thickness in excess of the standard. This reduces
the solar and earth's Van Allen mission radiation doses (but not the galactic
radiation dose) to values less than the mission dose limits (Figure 27).

The remaining dose was available for the stay on Ganymede. The shield
thickness selected corresponds to an electron dose rate due to the Jovian

trapped radiation. The stay time is simply the ratio of the remaining dose
to the electron dose rate.

The stay times calculated this way are shown in Figures 28 through 30.
It is seen that the greater the standard shield thickness (that required if
no encounter occurs with the Jovian trapped radiation) the greater the stay
time per unit added shielding. This is due to the electron dose rates being
a steep function of shield thickness; however, the curves tend to converge
for large amounts of added shielding because the electron dose approaches
the mission dose regardless of the solar radiation environment.

It is possible to treat this problem analytically. The dose (D') available
for a stay on Ganymede is

-1.6
D' = (D - 0.35 1) [ () ] e

where

Dy is the mission dose limit (rem)
t is the mission duration exclusive of a stay on Ganymede (rem)

x is the standard shield thickness (gm /cmz) required to meet the
mission dose limit Dy

y is the added shield thickness (gm /cm?2)

Thus, if y= 0, D' = 0, with D' increasing to a maximum of Dy -0.35 t.
The 0. 35 t represents the galactic radiation dose rate that is considered
to be independent of shield thickness up to ~30 gm/cm?.

The electron dose rate on Ganymede (D' R) may be represented ana-
lytically by an expression of the form

B03. 3

D'R=3.3-" "3

(62)

where Bg is the equatorial magnetic field strength in gauss. The stay time
(T) in hours is

(Do - 0.35 ) [1- <ny>l 6] (63)
T = 3 3 Tt
3.3 By
(x + y)3
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Figure 27, Effect of Shield Thickness
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Corresponding expressions can be developed for Io, Europa, and
Callisto. The numerators will be identical to that of Equation (63), but the
numbers in the denominator will be different. It will also be noted that the
value of x in Equation (63) can be obtained analytically from Equations (40)
and (41); the larger of the two values of x is appropriate.

Among the assumptions of Equation (63) is that the skin dose will be
the limiting factor. If x is =3 gm/cmz, this is true; but if x 23 gm/cmz,
the blood-forming dose will be the limiting factor for small values of y.

As y increases, however, the skin dose will again become the limiting factor
due to the steepness of the curves shown in Figure 26. If x is selected so
both the skin and blood-forming organ dose limits are satisfied, the use of
Equation (63) will lead to conservative values of .

Conclusions

There are order-of-magnitude uncertainties associated with the
trapped radiation about Jupiter. The decimetric and decametric radiation
make possible approximate calculations of the flux and spatial extent of
trapped electrons; the corresponding quantities for any trapped protons are
matters for conjecture. Until the source mechanisms for the earth's Van Allen
belts' protons are better understood, it is not possible to estimate param-
eters associated with protons in the Jovian trapped radiation.

It is probable that the calculations carried out here bracket the actual
situation on Jupiter. The values calculated for an equatorial field (Bg) of
2 gauss represent a lower limit, which will most probably be exceeded.
On the other hand, the values calculated for By = 15 gauss are probably too
high. Therefore, for planning purposes, the values associated with
By = 5 gauss are recommended.

The fluxes and dose rates associated with By = 5 gauss are such that
a landing on Ganymede appears possible, but is not clearly a desirable part
(from a radiation-shielding standpoint) of a manned mission to Jupiter.
For missions undertaken during the active portion of the solar cycle, a
small amount of extra shielding (3 gm /em?) will most probably suffice
for 60 days on Ganymede, while for missions undertaken when the sun is
quiet 26 gm /cm?2, extra shielding will be required. Total shield thicknesses
of 210 gm/cm? appear necessary in any event if a 60-day stay on Ganymede
is contemplated. Reducing the stay time to 30 days only decreases this
~2 gm/cm? at the most.

As an alternative, Callisto could be considered for manned landings
since the shield thickness required will be approximately a factor of two
less.
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